首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
航空   23篇
航天技术   20篇
航天   12篇
  2021年   2篇
  2018年   4篇
  2017年   3篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   7篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1985年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有55条查询结果,搜索用时 218 毫秒
31.
The Time Transfer by Laser Link (T2L2) is a very high resolution time transfer technique based on the recording of arrival times of laser pulses at the satellite. T2L2 was designed to achieve time stability in the range of 1 ps over 1000 s and an accuracy better than 100 ps. The project is in operation onboard the Jason-2 satellite since June 2008. The principle is based on the Satellite Laser Ranging (SLR) technology; it uses the input of 20–25 SLR stations of the international laser network which participate in the tracking. This paper focuses on the data reduction process which was developed specifically to transform the raw information given by both space instrument and ground network: first to identify the triplets (ground and onboard epochs and time of flight of the laser pulse), second to estimate a usable product in terms of ground-to-space time transfer (including instrumental corrections), and thirdly to produce synchronization between any pair of remote ground clocks. In describing the validation of time synchronizations, the paper opens a way for monitoring the time difference between ultra-stable clocks thanks to a laser link at a few ps level for Common View passes. It highlights however that without accurately characterizing the onboard oscillator of Jason-2 and knowing the unavailability of time calibrations of SLR stations generally, time transfer over intercontinental distances remain difficult to be accurately estimated.  相似文献   
32.
Since 1984, the European Space Agency (ESA) has organized 30 aircraft parabolic flight campaigns in the frame of its Microgravity Programme to perform short duration scientific and technological experiments. On each campaign, ESA invites journalists to report to the general public on the research work conducted in weightlessness. A new initiative was launched in 2000 with the introduction of pedagogical experiments aiming at educating youngsters and the general public on weightlessness effects. In November 2000, four secondary school teachers detached to the Euro Space Center (ESC) participated in the 29th ESA campaign. The ESC in Belgium provides recreational and educational activities for the general public and organizes space classes targeted at primary and secondary school pupils. The four teachers performed simple experiments with gyroscopes, yo-yos, magnetic balls, pendulum and food to explain their different behaviour in weightlessness, to show characteristics and possibilities of the microgravity environment and the difficulties that astronauts encounter in their daily life in orbit.  相似文献   
33.
34.
The tropopause, typically at 16 to 18 km altitude at the lower latitudes, dips to 8 km in the polar regions. This makes the cold, dry and nonturbulent lower stratosphere accessible to tethered aerostats. Tethered aerostats can fly as high as 12 km and are extremely reliable, lasting for many years. In contrast to free-flying balloons, they can stay on station for weeks at a time, and payloads can be safely recovered for maintenance and adjustment and relaunched in a matter of hours. We propose to use such a platform, located first in the Arctic (near Fairbanks, Alaska) and, potentially, later in the Antarctic, to operate a new technology 6-meter, diluted aperture telescope with diffraction-limited performance in the near infrared. Thanks to the low ambient temperature (220 K), thermal emission from the optics is of the same order as that of the zodiacal light in the 2 to 3 micron band. Since this wavelength interval is the darkest part of the zodiacal light spectrum from optical wavelengths to 100 microns, the combination of high resolution images and a very dark sky make it the spectral region of choice for observing the redshifted light from galaxies and clusters of galaxies at moderate to high redshifts.Affiliated to the Astrophysics Division, Space Science Department, European Space Agency  相似文献   
35.
Gradient generation for parametric control models   总被引:1,自引:0,他引:1  
This paper presents a numerical method for approximating the solution of complex optimal control problems by a constrained function minimization problem in a finite dimensional space. This end is achieved by approximating only the control functions by a finite set of parameters. The computation of gradients with respect to the parameters modeling the control is explored in depth. A hybrid technique combining the rapid gradient generation capability of the method of gradients with the rapid convergence characteristics of finite-dimensional, variable-metric function minimization algorithms is presented. An algorithm for mapping the impulsive response gradient trajectory generated by the method of gradients into a gradient vector of the performance index with respect to the parameters modeling the control function is presented. The class of local parameterizations is shown to have a distinct computational advantage, from a gradient generation point of view, over the class of continuous polynomial approximations. Detailed results are presented for piecewise linear parametric control models. An algebraic transformation is presented for improving inaccurate gradients generated by a widespread computer implementation of the method of gradients.  相似文献   
36.
The International Reference Ionosphere (IRI) parameters B0 and B1 provide a representation of the thickness and shape, respectively, of the F2 layer of the bottomside ionosphere. These parameters can be derived from electron density profiles that are determined from vertical incidence ionograms. This paper aims to illustrate the variability of these parameters for a single mid latitude station and demonstrate the ability of the Neural Network (NN) modeling technique for developing a predictive model for these parameters. Grahamstown, South Africa (33.3°S, 26.5°E) was chosen as the mid latitude station used in this study and the B0 and B1 parameters for an 11 year period were determined from electron density profiles recorded at that station with a University of Massachusetts Lowell Center for Atmospheric Research (UMLCAR) Digisonde. A preliminary single station NN model was then developed using the Grahamstown data from 1996 to 2005 as a training database, and input parameters known to affect the behaviour of the F2 layer, such as day number, hour, solar and magnetic indices. An analysis of the diurnal, seasonal and solar variations of these parameters was undertaken for the years 2000, 2005 and 2006 using hourly monthly median values. Comparisons between the values derived from measured data and those predicted using the two available IRI-2001 methods (IRI tables and Gulyaeva, T. Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv. Space Res. 7(6), 39–48, 1987.) and the newly developed NN model are also shown in this paper. The preliminary NN model showed that it is feasible to use the NN technique to develop a prediction tool for the IRI thickness and shape parameters and first results from this model reveal that for the mid latitude location used in this study the NN model provides a more accurate prediction than the current IRI model options.  相似文献   
37.
Life, as we know it, is based on carbon chemistry operating in an aqueous environment. Living organisms process chemicals, make copies of themselves, are autonomous and evolve in concert with the environment. All these characteristics are driven by, and operate through, carbon chemistry. The carbon chemistry of living systems is an exact branch of science and we have detailed knowledge of the basic metabolic and reproductive machinery of living organisms. We can recognise the residual biochemicals long after life has expired and otherwise lost most life-defining features. Carbon chemistry provides a tool for identifying extant and extinct life on Earth and, potentially, throughout the Universe. In recognizing that certain distinctive compounds isolable from living systems had related fossil derivatives, organic geochemists coined the term biological marker compound or biomarker (e.g. Eglinton et al. in Science 145:263–264, 1964) to describe them. In this terminology, biomarkers are metabolites or biochemicals by which we can identify particular kinds of living organisms as well as the molecular fossil derivatives by which we identify defunct counterparts. The terms biomarker and molecular biosignature are synonymous. A defining characteristic of terrestrial life is its metabolic versatility and adaptability and it is reasonable to expect that this is universal. Different physiologies operate for carbon acquisition, the garnering of energy and the storage and processing of information. As well as having a range of metabolisms, organisms build biomass suited to specific physical environments, habitats and their ecological imperatives. This overall ‘metabolic diversity’ manifests itself in an enormous variety of accompanying product molecules (i.e. natural products). The whole field of organic chemistry grew from their study and now provides tools to link metabolism (i.e. physiology) to the occurrence of biomarkers specific to, and diagnostic for, particular kinds of metabolism. Another characteristic of living things, also likely to be pervasive, is that an enormous diversity of large molecules are built from a relatively small subset of universal precursors. These include the four bases of DNA, 20 amino acids of proteins and two kinds of lipid building blocks. Third, life exploits the specificity inherent in the spatial, that is, the three-dimensional qualities of organic chemicals (stereochemistry). These characteristics then lead to some readily identifiable and measurable generic attributes that would be diagnostic as biosignatures. Measurable attributes of molecular biosignatures include:
  1. Enantiomeric excess
  2. Diastereoisomeric preference
  3. Structural isomer preference
  4. Repeating constitutional sub-units or atomic ratios
  5. Systematic isotopic ordering at molecular and intramolecular levels
  6. Uneven distribution patterns or clusters (e.g. C-number, concentration, δ 13C) of structurally related compounds.
In this paper we address details of the chemical and biosynthetic basis for these features, which largely arise as a consequence of construction from small, recurring sub-units. We also address how these attributes might become altered during diagenesis and planetary processing. Finally, we discuss the instrumental techniques and further developments needed to detect them.  相似文献   
38.
The chemistry of the Ni-based superalloys designed for single crystal gas turbine blades has significantly evolved since the development of the first generation of alloys derived from columnar grained materials. The overall performance of the second and third generations has been significantly improved by the addition of increasing amounts of rhenium. However, the problems of increased density, grain defects and microstructural stability have also become more and more acute and render necessary to carefully control the level of the various alloying elements in order to effectively benefit from the high potential of the most recently developed third generation alloys.  相似文献   
39.
The T2L2 (Time Transfer by Laser Link) project, developed by CNES and OCA will permit the synchronization of remote ultra stable clocks and the determination of their performances over intercontinental distances. The principle of the experiment derives from Satellite Laser Ranging (SLR) technology with dedicated space equipment. T2L2 was accepted in 2005 to be on board the Jason2 altimetry satellite. The payload consists of both event timer and photo detection modules. The system uses the ultra-stable quartz oscillator of DORIS as on-board reference clock on one hand, and the Laser Reflector Array, making T2L2 a real two-way time transfer system on the other hand. The expected time stability of the T2L2 instrument (detection and timing), referenced by the DORIS oscillator and including all internal error sources should be at the level of 10–12 ps at 1 s and <1 ps at 1000 s. The metrological specifications of T2L2 should permit to maintain a precision of 1 to a few ps when measuring the phase of a clock during around 1000 seconds.  相似文献   
40.
This study presents the first prediction results of a neural network model for the vertical total electron content of the topside ionosphere based on Swarm-A measurements. The model was trained on 5 years of Swarm-A data over the Euro-African sector spanning the period 1 January 2014 to 31 December 2018. The Swarm-A data was combined with solar and geomagnetic indices to train the NN model. The Swarm-A data of 1 January to 30 September 2019 was used to test the performance of the neural network. The data was divided into two main categories: most quiet and most disturbed days of each month. Each category was subdivided into two sub-categories according to the Swarm-A trajectory i.e. whether it was ascending or descending in order to accommodate the change in local time when the satellite traverses the poles. Four pairs of neural network models were implemented, the first of each pair having one hidden layer, and the second of each pair having two hidden layers, for the following cases: 1) quiet day-ascending, 2) quiet day-descending, 3) disturbed day-ascending, and 4) disturbed day-descending. The topside vertical total electron content predicted by the neural network models compared well with the measurements by Swarm-A. The model that performed best was the one hidden layer model in the case of quiet days for descending trajectories, with RMSE = 1.20 TECU, R = 0.76. The worst performance occurred during the disturbed descending trajectories where the one hidden layer model had the worst RMSE = 2.12 TECU, (R = 0.54), and the two hidden layer model had the worst correlation coefficient R = 0.47 (RMSE = 1.57).In all cases, the neural network models performed better than the IRI2016 model in predicting the topside total electron content. The NN models presented here is the first such attempt at comparing NN models for the topside VTEC based on Swarm-A measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号